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INTRODUCTON 

Diabetes is one of the top 10 global causes of death. 

Along with heart disease, cancer, and lung disease, 

it accounts for over 80% of early deaths from 

noncommunicable diseases (NCDs)
6
. 

People with diabetes have a 2-3 times higher risk of 

dying from any cause
7
. Diabetes is linked to higher 

death rates from infections, heart disease, stroke, 

kidney disease, liver disease, and cancer
8,9

. Despite 

ABSTRACT 

Diabetes is a major global health issue, affecting public health and economic development. While some 

countries have seen a drop in new cases, diabetes has become more common in many other places
1-3

. In 2017, 

the International Diabetes Federation (IDF) estimated that 451 million adults had diabetes, and this number 

could rise to 693 million by 2045 without effective prevention. Both type 1 and type 2 diabetes are also 

increasing among children and teens, with over one million under 20 now having type 1 diabetes
4
. The 

prevalence of both type 1 and type 2 diabetes among children and adolescents has also increased, and the 

estimates of children and adolescents below age 20 with Type 1 Diabetes now exceed one million
5
. Glucokinase 

(GK or hexokinase IV) as the glucose sensor plays a pivotal role in glucose homeostasis
1
. Glucokinase (GK) is 

important for managing blood sugar levels. In the pancreas, it helps control insulin release, and in the liver, it 

helps store sugar and clear it from the blood after eating. Roche’s early success in activating GK suggested it 

could be a new treatment for type 2 diabetes, leading to a lot of interest in GK activators (GKAs). However, 

research on how GKAs work has been limited. Early failures in developing GKAs have led researchers to revisit 

basic questions about GK activation to find long-term benefits for type 2 diabetes patients
3
. 
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improvements in public health and longer life spans, 

diabetes is the second largest factor reducing global 

health-adjusted life expectancy
10

. 

The global impact of diabetes has grown a lot in 

recent decades and will keep rising. The Global 

Burden of Disease study (GBD) uses various data 

sources, like hospital records and death certificates, 

to estimate diabetes rates, deaths, and disability-

adjusted life years (DALYs) worldwide
11

. 

DALYs measure total health loss by combining 

years lost to early death and years lived with 

disability. This data helps the Global Burden of 

Disease study (GBD) track diabetes’ impact over 

time and plan health services. The study looks at 

trends in diabetes by type, year, socioeconomic 

status, and risk factors to help prevent and control 

non-communicable diseases (NCDs) by 2025
12-13

. A 

study found that people with hypertension and 

diabetes are more likely to have severe COVID-19, 

posing a new challenge for health professionals 

worldwide
14

. 

Diabetes Mellitus in summary 

Diabetes was first noted by the Egyptians for 

causing weight loss and frequent urination. The 

Greek physician Aertaeus named it Diabetes 

mellitus, meaning “to pass through” (diabetes) and 

“honey” (mellitus) due to the sweetness of the 

urine. Diabetes is a major cause of long-term illness 

and early death, killing more people annually than 

HIV-AIDS, with nearly one death every 10 seconds. 

Industrialization and rising obesity have turned 

diabetes into a global epidemic. Measuring its 

prevalence is tough because data collection methods 

vary and many cases (about 50%) go undiagnosed. 

Changes in life expectancy and healthcare have 

contributed to the rise in diabetes, especially in 

urban areas. This will increase healthcare burdens 

worldwide, as diabetes leads to both short-term and 

long-term complications and early death. 

Novel and emerging diabetes mellitus drug 

therapies (GKA) for treating type 2 diabetes 

patients 

Glucokinase (GK or hexokinase IV) is crucial for 

maintaining blood sugar balance as it acts as a 

glucose sensor
 15

. In pancreatic β-cells, glucokinase 

(GK) helps control insulin release based on blood 

sugar levels. In the liver, it aids in storing glycogen 

and clearing glucose after meals. It also helps 

regulate glucagon secretion from pancreatic α-cells. 

Since insulin secretion is impaired in Type 2 

Diabetes (T2D), it was thought that drugs activating 

GK could boost insulin release. In the 1990s, 

developing GK activators (GKAs) for T2D was a 

new idea. Roche’s early success showed that GK 

activation could be a new treatment for T2D, 

sparking interest in GKAs. However, research on 

how GKAs work has been limited. Early failures 

led researchers to revisit basic questions about GK 

activation for long-term benefits in T2D. The recent 

success of Dorzagliatin in Chinese T2D patients has 

renewed hope for GK as a T2D treatment, showing 

promise for repairing defects in the pancreas and 

liver. Pharmacological activation of GK is expected 

to be highly effective for treating T2D and possibly 

Type 1 Diabetes (T1D). Early results with GKAs 

support this potential. 

 

METHODS AND MATERIAL 

Co-Crystallization of the Human Glucokinase 

enzyme 

The RCSB Protein Data Bank entry 1V4S 

(https://www.rcsb.org/structure/1V4S) features the 

computational structure of Human Glucokinase 

(GK). This protein was bound at its allosteric site by 

5-(1-Methyl-1H-imidazol-2-yl-thio)-2-amino-4-

fluoro-N-(thiazol-2-yl) benzamide, ATP and Mg++. 

The protein was devoid of its native ligand, refined 

and prepared for docking studies using Discovery 

Studio Visualizer 2019.  

Approximately 700-800 protein structures, co-

crystallized with Mg++ ion, ATP, and various 

ligands (such as RO-28-1675, Piragliatin, or other 

GKAs), were downloaded from the RCSB-PDB 

site. These structures, representing the metallo-

enzyme with kinase activity, GK, were analyzed 

using the Ramachandran Plot. This analysis 

provided comprehensive insights into the suitability 

of amino acid residue orientations in the computed 

protein co-crystallized structures, aiding in the 

selection of one for docking studies. Consequently, 

co-crystals of 5-(1-methyl-1H-imidazol-2-ylthio)-2-

amino-4-fluoro-N-(thiazol-2-yl) benzamide of GK 
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were obtained from the PDB site. The structures of 

the designed ligands were created using the 

ChemSketch freeware module from ACD Labs and 

are represented by the Markush formula in Table 1 

listed in the Results and discussion section. 

Docking studies 

In the CADD software, the selected structures, used 

as ligands along with the standard RO-28-1675, 

were docked into the allosteric site of the enzyme’s 

crystal structure to examine their interactions. This 

was done to identify the designed structures with 

suitable binding interactions for further studies. A 

grid with a 5 Å radius was set around the amino 

acids forming the enzyme’s allosteric site. The 

structures were docked with a Root Mean Square 

Deviation (RMSD) tolerance of 2.0. Binding 

energies (G scores) were obtained, selecting the 

value with the lowest RMSD. For each docking 

study, the three interaction poses with the lowest G 

scores were considered for final selection. The 

docking studies were conducted using the protein 

interaction suite of Autodock 1.5.6 for 250 ligands. 

The results were then imported into Discovery 

Studio for visualization. Some ligands showed 

acceptable G-scores (-7.0127 to -7.1323), close to 

the G-score of the standard ligand, RO-28-1675 (-

8.9124). Figure No.1 of the results and discussion 

section illustrates the docked pose of GK bound to 

one of the designed molecules in its allosteric 

cavity. 

Screening through Molecular Docking 

Figure No.2 of the results and discussion section 

shows a comprehensive view of all ligands actively 

docked in the allosteric site of the GK enzyme. The 

figure illustrates the ligand positioned within the 

allosteric site of the GK enzyme. The images were 

generated using the PyRx virtual screening tool. All 

the designed derivatives were docked, and only 

those showing expected interactions with the amino 

acid residues TYR215, TYR210, ARG63 and 

MET205 were selected. These chosen ligands were 

then evaluated for compliance with Lipinski’s Rule 

of Five to optimize the study further. 

 

 

Structures of the designed ligands that shows 

good docking score 

Table No.2 of the results and discussion section 

presents the results of applying Lipinski’s Rule of 

Five. 

SWISS ADME Study 

Free online software tools such as SwissADME, 

Schrodinger 2020, AutoDOCK (ver. 1.5.7) and 

Discovery Studio 2021 were used to assist in 

ADME and docking studies, examining the 

interaction between ligands and the selected protein 

structure. The toxicity of the designed structures 

was assessed by analyzing the SMILES formulas of 

quinazoline derivatives. This step helped eliminate 

potential toxicity concerns that could arise if these 

structures were synthesized in the laboratory. 

Parameters such as aqueous solubility (Log S), 

membrane permeability (Log Kp), synthetic 

accessibility scores (SA), percentage absorption, 

probable pharmacokinetics, and drug-likeness 

properties of the designed molecules were 

evaluated. According to Lipinski’s Rule of Five, 

these parameters help summarize the molecular 

properties of the designed structures, aiming to 

develop them as potential drug candidates with 

predicted therapeutic, pharmacokinetic, and toxicity 

profiles. The rule suggests considering molecules 

with molecular weights ≤ 500, hydrogen bond 

donors ≤ 5, hydrogen bond acceptors ≤ 10, and 

rotatable bonds ≤ 10 for further studies. 

Consequently, significant drug-like molecules were 

shortlisted and further studied. The data obtained 

from SwissADME studies, including the amino acid 

residues interacting with the docked ligands, their 

types of interactions, and the number of hydrogen 

bonds formed, are presented in Table No.2. 

Followed by the 2D and 3D poses of docked ligands 

in Table No.3. 

 

RESULTS AND DISCUSSION  

Certain 2, 3, 5-trisubstituted indole derivatives were 

designed as ligands to interact with the amino acid 

residues located allosterically in GK enzyme and 

keep it in its active mode. These are tabulated below 

and are the structures that were docked with R, R1 

and R2 groups listed in the Table No.1.  
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Out of a total of 232 designed ligands and studied 

for ADME properties, seven were selected for 

performing docking analysis and based on favorable 

interactions 4 ligands were promoted to wet-lab 

synthesis. 

 

 

 

 

 

 

Table No.1: R, R1 and R2 groups of the pharmacophore that has been synthesized 

S.No 
Compound 

Code 
R R1 R2 HBD HBA PKa 

1 Ai 
2-methyl-1, 3-thiazol-5-yl) 

carbamoyl 
-H -CH2COOH 3 6 5.32 

2 Aiii 
2-methyl-1, 3-thiazol-5-yl) 

carbamoyl 
-NHCOCH3 -H 3 3 2.43 

3 Aiv 
2-methyl-1, 3-thiazol-5-yl) 

carbamoyl 
-NHCOCH3 -CH2COOH 5 7 2.19 

4 Avi 2-methyl-1, 3-thiazol-5-yl) amino -NHCOCH3 -H 3 6 1.62 

5 Aix 2-methyl-1, 3-thiazol-5-yl) amino -CH2COOH -H 3 8 1.15 

6 Axii 2-methyl-1, 3-thiazol-5-yl) amino -OH -CH2CH2CH3 2 6 1.31 

7 Axiv 2-methyl-1, 3-thiazol-5-yl) amino H -H 3 2 2.27 

Table No.2: The results of the application of Lipinski Rule of Five 

S.No Code pKa Mol. Wt. HBD HBA Lipinski BBM 

1 Ia 

Log Po/w (iLOGP) 1.93 

Log Po/w (XLOGP3) 2.69 

Log Po/w (WLOGP) 3.01 

Log Po/w (MLOGP) 0.74 

Log Po/w (SILICOS-IT) 3.77 

Consensus Log Po/w 2.43 

287.34g/mol 3 3 Yes No 

2 Ib 

Log Po/w (iLOGP) 1.11 

Log Po/w (XLOGP3) 1.11 

Log Po/w (WLOGP) 1.01 

Log Po/w (MLOGP) 0.21 

Log Po/w (SILICOS-IT) 3.77 

Consensus Log Po/w 5.32 

301.36g/mol 3 6 Yes No 

3 Ic 

Log Po/w (iLOGP) 0. 16 

Log Po/w (XLOGP3) 1.67 

Log Po/w (WLOGP) 1.09 

Log Po/w (MLOGP) 0.18 

Log Po/w (SILICOS-IT 1.08 

Consensus Log Po/w 1.31 

315.391g/mol 2 6 Yes yes 

4 Id 

Log Po/w (iLOGP) 1.66 

Log Po/w (XLOGP3)  0.43 

Log Po/w (WLOGP) 1.21 

Log Po/w (MLOGP) 0.61 

Log Po/w (SILICOS-IT) 2. 41 

Consensus Log Po/w 1.62 

329.41g/mol 3 6 Yes No 

5 IIa Log Po/w (iLOGP) 1.84 286.35g/mol 3 2 Yes No 
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Log Po/w (XLOGP3) 2.37 

Log Po/w (WLOGP) 2.89 

Log Po/w (MLOGP) 0.74 

Log Po/w (SILICOS-IT) 3.53 

Consensus Log Po/w  2.27 

6 IIb 

Log Po/w (iLOGP) 1.22 

Log Po/w (XLOGP3)  2.27 

Log Po/w (WLOGP) 2.80 

Log Po/w (MLOGP) 0.40 

Log Po/w (SILICOS-IT) 3.43 

Consensus Log Po/w  2.19 

300.38g/mol 5 7 Yes No 

7 IIc 

Log Po/w (iLOGP) 1.11 

Log Po/w (XLOGP3) 1.11 

Log Po/w (MLOGP) 0.18 

Log Po/w (SILICOS-IT) 1.08 

Consensus Log Po/w 1.15 

314.40 3 8 Yes Yes 

8 IId 

Log Po/w (iLOGP) 1.66 

Log Po/w (WLOGP) 2.89 

Log Po/w (MLOGP) 0.40 

Log Po/w (SILICOS-IT) 3.43 

Consensus Log Po/w 2.19 

328.4 3 6 Yes Yes 

9 IIIa 

Log Po/w (iLOGP) 0.71 

Log Po/w (XLOGP3) 1.47 

Log Po/w (WLOGP) 2.21 

Log Po/w (MLOGP) 0.12 

Log Po/w (SILICOS-IT) 2.84 

Consensus Log Po/w 1.47 

 

330.36g/mol 

 

4 4 Yes No 

10 IIIb 

Log Po/w (iLOGP) 0.877 

Log Po/w (XLOGP3)  3.14 

Log Po/w (WLOGP) 3.10 

Log Po/w (MLOGP) 0.66 

Log Po/w (SILICOS-IT) 3.45 

Consensus Log Po/w 2.67 

344.38g/mol 5 7 Yes No 

11 IIIc 

Log Po/w (iLOGP) 0.81 

Log Po/w (XLOGP3) 2.54 

Log Po/w (WLOGP) 3.77 

Log Po/w (MLOGP) 0.45 

Log Po/w (SILICOS-IT) 6.23 

Consensus Log Po/w 3.87 

358.41g/mol 7 8 Yes No 

12 IIId 

Log Po/w (iLOGP) 0.81 

Log Po/w (XLOGP3) 2.54 

Log Po/w (WLOGP) 3.77 

Log Po/w (MLOGP) 0.45 

Log Po/w (SILICOS-IT) 4.56 

Consensus Log Po/w 2.67 

373.45g/mol 8 8 Yes No 

13 IVa 
Log Po/w (iLOGP) 2.25 

Log Po/w (XLOGP3) 2.23 
328.39g/mol 3 3 YES No 
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Log Po/w (WLOGP) 3.07 

Log Po/w (MLOGP) 0.77 

Log Po/w (SILICOS-IT) 3.89 

Consensus Log Po/w 2.44 

14 Va 

Log Po/w (iLOGP) 0.99 

Log Po/w (XLOGP3) 1.32 

Log Po/w (WLOGP) 2.39 

Log Po/w (MLOGP) 0.16 

Log Po/w (SILICOS-IT) 3.23 

Consensus Log Po/w 1.62 

372.40g/mol 5 4 YES No 

15 VIa 

Log Po/w (iLOGP) 2.97 

Log Po/w (XLOGP3) 4.97 

Log Po/w (WLOGP) 4.89 

Log Po/w (MLOGP) 2.75 

Log Po/w (SILICOS-IT) 6.21 

Consensus Log Po/w 4.36 

361.46g/mol 2 2 YES No 

16 

VIIa 

 

 

 

Log Po/w (iLOGP) 2.45 

Log Po/w (XLOGP3) 4.07 

Log Po/w (WLOGP) 4.21 

Log Po/w (MLOGP) 2.07 

Log Po/w (SILICOS-IT) 5.53 

Consensus Log Po/w 3.67 

405.47g/mol 3 4 YES No 

17 VIIIa 

Log Po/w (iLOGP) 2.53 

Log Po/w (XLOGP3) 3.68 

Log Po/w (WLOGP) 3.96 

Log Po/w (MLOGP) 1.83 

Log Po/w (SILICOS-IT) 4.88 

Consensus Log Po/w 3.38 

05.78g/mol 2 2 YES No 

18 XIa 

Log Po/w (iLOGP) 1.55 

Log Po/w (XLOGP3) 2.77 

Log Po/w (WLOGP) 3.27 

Log Po/w (MLOGP) 1.17 

Log Po/w (SILICOS-IT) 4.20 

Consensus Log Po/w 2.59 

349.79g/mol 3 4 YES No 

19 Xa 

Log Po/w (iLOGP) 2.34 

Log Po/w (XLOGP3) 3.15 

Log Po/w (WLOGP) 3.86 

Log Po/w (MLOGP) 1.70 

Log Po/w (SILICOS-IT) 4.67 

Consensus Log Po/w 3.14 

289.33g/mol 2 3 Yes No 

20 XIa 

Log Po/w (iLOGP) 1.23 

Log Po/w (XLOGP3)  2.25 

Log Po/w (WLOGP) 3.18 

Log Po/w (MLOGP) 1.05 

Log Po/w (SILICOS-IT) 3.98 

Consensus Log Po/w  2.34 

333.34g/mol 3 5 Yes No 

21 XIIa Log Po/w (iLOGP) 2.28 339.34g/mol 2 5 Yes No 
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Log Po/w (XLOGP3)  3.93 

Log Po/w (WLOGP) 5.47 

Log Po/w (MLOGP) 2.20 

Log Po/w (SILICOS-IT) 5.30 

Consensus Log Po/w 3.84 

22 XIIIa 

Log Po/w (iLOGP) 1.63 

Log Po/w (XLOGP3) 3.03 

Log Po/w (WLOGP) 4.79 

Log Po/w (MLOGP) 1.54 

Log Po/w (SILICOS-IT) 4.64 

Consensus Log Po/w 3.13 

383.34g/mol 3 7 Yes No 

PKa= Partition Coefficient; Mol. Wt= Molecular Weight; HBD= Hydrogen Bond Doner; HBA= Hydrogen 

Bond Acceptor; Lipinski= Lipinski Rule followed; BBM= Blood Brain Membrane 

Table No.3: 2D and 3D poses of docked ligands that shows good results of docking and ADME 

S.No 
Compound 

Code 
2D Structure 3D Structure 

1 i4 

  

2 i5 

  

3 i6 

  

4 i7 
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Figure No.1: Dock pose of GK bound to one of the designed molecules in its allosteric cavity 

 
Figure No.2: Combined view of all ligands actively docked in the allosteric site of the GK enzyme 

 
Figure No.3: Probable Pharmacophore 

 

CONCLUSION 

It is quite evident from the results given above that 

the ligands with substitution of more than one 

carbon-long chain would confer hydrophobic 

properties, thereby resulting in less polar molecules 

that would always have more hydrophobic 

interactions. Moreover, they would cross the blood 

brain barrier. Hence, structures of ligands with 

methyl substitution on the second position of the 

heterocyclic ring could be preferred for synthesizing 

in the wet-lab. 
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